XIV Summer Workshop in Mathematics MAT/UnB 19o Seminário Informal (+Formal!) do Grupo de Teoria da Computação da UnB

Formalizing Theorems with PVS

Section 3: Pen-and-paper proofs vs Formal proofs

Funded by FAPDF DE grants 00193.0000.2144/2018-81, 00193-00000229/2021-21, and CNPq Research Grants 307672/2017-4 and 313290/2021-0

Jan 17 - 21 , 2022

 $4.11 \times 4.41 \times 4.71 \times 4.71$

 QQ

Talk's Plan

- 1 [Summarizing the benefits of mechanical theorem proving](#page-2-0)
- 2 [The general version of Chinese Remainder Theorem](#page-4-0)
- ³ [A simple remark in Hungerford's textbook](#page-9-0)
	- [Formalizing a simple remark in Hungerford's abstract algebra](#page-9-0) [textbook](#page-9-0)

∍

 Ω

What are the benefits that could be obtained from mechanical theorem proving?

- To improve the capability to detect flaws, omissions, redundancies, and errors in pen-and-paper proofs.
- To increase the ability to provide precise and complete formulations of definitions, theorems, and proofs.
- To refine the precision grade to formulate feasible conjectures and consequently the capability to discover new results.
- To fix the required discipline and organization to compile and communicate reliable and reproducible mathematical knowledge.
- Moreover, and the most important, to provide a thoughtful and rigorous understanding of any mathematical theory.

 Ω

イロト イ押ト イミト イミト

Interesting opinions in: Jeremy Avigad ["The Mechanization of Mathematics"](http://dx.doi.org/10.1090/noti1688)

[- Notices of the AMS 2018](http://dx.doi.org/10.1090/noti1688)

"But the mathematical literature is filled with errors, ranging from typographical errors, missing hypotheses, and overlooked cases to mistakes that invalidate a substantial result."

"The situation will only get worse as proofs get longer and more complex. In a 2008 opinion piece in the Notices, ["Desperately seeking mathematical truth",](https://arxiv.org/pdf/0809.1372.pdf) Melvyn Nathanson lamented the difficulties in certifying mathematical results: "We mathematicians like to talk about the 'reliability' of our literature, but it is, in fact, unreliable." "

"Checking the details of a mathematical proof is far less enjoyable than exploring new concepts and ideas, but it is important nonetheless. Rigor is essential to mathematics, and even minor errors are a nuisance to those trying to read, reconstruct, and use mathematical results."

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 QQ

Chinese Remainder Theorem - The integer version

Consider m_1, \ldots, m_r positive integers such that m_i and m_j are coprime for $i \neq j$ and $m = m_1 \dots m_r$. Thus,

$$
\mathbb{Z}/(m_1 \dots m_r) \mathbb{Z} \cong \mathbb{Z}/m_1 \mathbb{Z} \times \ldots \times \mathbb{Z}/m_r \mathbb{Z}
$$

In other notation

$$
\mathbb{Z}_m \cong \mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_r}
$$

 Ω

 \leftarrow \leftarrow

Chinese Remainder Theorem - The general version for Rings

Let R be a ring with identity and A_1, A_2, \ldots, A_k ideals in R. If the condition $A_i + A_j = R$ holds for each $i, j \in \{1, ..., k\}$ with $i \neq j$, which is called comaximality, then

$$
R/(A_1 \cap \ldots \cap A_k) \cong R/A_1 \times \ldots \times R/A_k
$$

Step 1: Prove that

$$
\varphi: R \to R/A_1 \times \ldots \times R/A_k
$$

$$
r \mapsto (r + A_1, \ldots, r + A_k)
$$

is a ring homomorphism with kernel $A_1 \cap \ldots \cap A_k$;

 Ω

Chinese Remainder Theorem - The general version for Rings

Step 2: Prove that

$$
\varphi: R \to R/A_1 \times \ldots \times R/A_k
$$

$$
r \mapsto (r + A_1, \ldots, r + A_k)
$$

is a surjective function;

Step 3: Conclude the result by the First Isomorphism for Rings.

 Ω

Chinese Remainder Theorem - The general version for Rings

Theorem 17. (Chinese Remainder Theorem) Let A_1, A_2, \ldots, A_k be ideals in R. The map

 $R \rightarrow R/A_1 \times R/A_2 \times \cdots \times R/A_k$ defined by $r \mapsto (r+A_1, r+A_2, \ldots, r+A_k)$

is a ring homomorphism with kernel $A_1 \cap A_2 \cap \cdots \cap A_k$. If for each i, $j \in \{1, 2, \ldots, k\}$ with $i \neq j$ the ideals A_i and A_j are comaximal, then this map is surjective and $A_1 \cap A_2 \cap \cdots \cap A_k = A_1 A_2 \cdots A_k$, so

$$
R/(A_1A_2\cdots A_k)=R/(A_1\cap A_2\cap\cdots\cap A_k)\cong R/A_1\times R/A_2\times\cdots\times R/A_k.
$$

Sec. 7.6 The Chinese Remainder Theorem

265

Proof: We first prove this for $k = 2$; the general case will follow by induction. Let $A = A_1$ and $B = A_2$. Consider the map $\omega : R \rightarrow R/A \times R/B$ defined by $\varphi(r) = (r \mod A, r \mod B)$, where mod A means the class in R/A containing r (that is, $r + A$). This map is a ring homomorphism because φ is just the natural projection of R into R/A and R/B for the two components. The kernel of φ consists of all the elements $r \in R$ that are in A and in B, i.e., $A \cap B$. To complete the proof in this case it remains to show that when A and B are comaximal, φ is surjective and $A \cap B = AB$. Since $A + B = R$, there are elements $x \in A$ and $y \in B$ such that $x + y = 1$. This equation shows that $\varphi(x) = (0, 1)$ and $\varphi(y) = (1, 0)$ since, for example, x is an element of A and $x = 1 - y \in 1 + B$. If now $(r_1 \mod A, r_2 \mod B)$ is an arbitrary element in $R/A \times R/B$, then the element $r_2x + r_1y$ maps to this element since

 Ω

 $4.11 \times 4.41 \times 4.71 \times 4.71$

- \bullet In order to formalize that phi is a homomorphism, one must verify that for all $j \le k$, and a, b in R, $(a + b) + A_j = (a + A_j) + (b + A_j)$ holds (quotient rings@add charac).
- It has an equivalent cost of the analysis for two ideals in a proof by induction, where $k = 2$.
- In the induction step, the analysis given for two ideals cannot be repeated in a straightforward manner: one has to build structures such as an ideal A such that $(R/A_1 \times ... \times R/A_n) \simeq R/A$, to be able to apply the reasoning for two ideals to conclude that the map phi is a homomorphism from R to $R/A \times R/A_{n+1}$.

 Ω

Definition 3.5. An integral domain R is a unique factorization domain provided that:

(i) every nonzero nonunit element a of R can be written $a = c_1c_2 \cdots c_n$, with c_1, \ldots, c_n irreducible.

(ii) If $a = c_1c_2 \cdots c_n$ and $a = d_1d_2 \cdots d_m$ (c_i, d_i irreducible), then $n = m$ and for some permutation σ of $\{1,2,\ldots,n\}$, c_i and $d_{\sigma(i)}$ are associates for every i.

REMARK. Every irreducible element in a unique factorization domain is necessarily prime by (ii). Consequently, irreducible and prime elements coincide by Theorem 3.4 (iii).

 Ω

Definition 1.5. A commutative ring R with identity $1_R \neq 0$ and no zero divisors is called an integral domain. A ring D with identity $1_D \neq 0$ in which every nonzero element is a unit is called a division ring. A field is a commutative division ring.

4. 17. 18.

See the file integral_domain_with_one_def.pvs in

<https://github.com/nasa/pvslib/tree/master/algebra>

 Ω

- ④ → ④ ⇒ → ④ ⇒ →

Definition 1.4. An element a in a ring R with identity is said to be left (resp. right) invertible if there exists $c \in R$ [resp. b $\in R$] such that $ca = 1_R$ [resp. ab = 1_R]. The element c [resp. b] is called a left [resp. right] inverse of a. An element $a \in R$ that is both left and right invertible is said to be invertible or to be a unit.

Definition 3.1. A nonzero element a of a commutative ring R is said to divide an element b $\epsilon \mathbf{R}$ (notation: a | b) if there exists $x \epsilon \mathbf{R}$ such that $ax = b$. Elements a, b of R are said to be **associates** if a \vert b and b \vert a.

Definition 3.3. Let R be a commutative ring with identity, An element c of R is irreducible provided that:

 (i) c is a nonzero nonunit:

(ii) $c = ab \Rightarrow a \text{ or } b \text{ is a unit.}$

An element p of R is prime provided that:

- (i) p is a nonzero nonunit:
- (ii) $p | ab \Rightarrow p | a \text{ or } p | b$.

∍

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

- \bullet In \mathbb{Z} , the notions of prime and irreducible elements are equal.
- In \mathbb{Z}_6 , 2 is a prime element; however 2 is not an irreducible element.

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Every prime element in an integral domain R is an irreducible element.

If $p = ab$ then $p|a$ or $p|b$ since $p|p = ab$ and p is prime. Consider that $p|a$. Thus $a = px$ and $p = ab = pxb$. Consequently, $p - pxb = p(one - xb) = zero$. Thus, $xb = one$ and b is an unit.

 Ω

Definition 3.5. An integral domain R is a unique factorization domain provided that:

(i) every nonzero nonunit element a of R can be written $a = c_1c_2 \cdots c_n$, with c_1, \ldots, c_n irreducible.

(ii) If $a = c_1c_2 \cdots c_n$ and $a = d_1d_2 \cdots d_m$ (c_i, d_i irreducible), then $n = m$ and for some permutation σ of $\{1,2,\ldots,n\}$, c_i and $d_{\sigma(i)}$ are associates for every i.

REMARK. Every irreducible element in a unique factorization domain is necessarily prime by (ii). Consequently, irreducible and prime elements coincide by Theorem 3.4 (iii).

 Ω