Mechanizing Mathematics

Case of Study: The infinity of prime numbers by Fürstenberg argument

Universidad Nacional de Colombia - Sede Manizales Facultad de Ciencias Exactas y Naturales

Thaynara Arielly de Lima (IME) **UFG** Mauricio Ayala-Rincón (CIC-MAT) **UnB**

Funded by the Brazilian agencies CNPq, grants Universal 409003/21-2; FAPDF, grant DE 00193-00001175/2021-11 and

FAPEG, grant 202310267000223.

May 29 - June 02 , 2023

化口水 化间水 化压水 化压水

Talk's Plan

M. Ayala-Rincón (UnB) & T. A. de Lima (UFG)

Mechanizing Mathematic

Universidad Nacional de Colombia - Sede Manizales

DAG

э

・ロト ・回ト ・ヨト ・ヨト

Infinity of Primes:

Fürstenberg Topological Argument [2], [1]

Our main goal in this mini-course is to formalize the Infinity of Primes following the Fürstenberg argumentation.

Let's see the analytical proof of such fact.

周 ト イ ヨ ト イ ヨ ト

Infinity of Primes:

Fürstenberg Topological Argument

Topology

A topology over a set X is a collection τ of subsets of X satisfying the following properties:

- i) \emptyset and X belong to τ ;
- ii) The union of elements of any sub-collection of τ belongs to τ ;
- iii) The intersection of elements of a finite sub-collection of τ belongs to τ .
 - A set X equipped with a topology τ is called a **topological space**.
 - A subset U of a topological space X, that belongs to the collection τ , is called an **open set of** X.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example

Consider the sets $X = \mathbb{Z}$ and $N_{a,b} = \{a + n \cdot b; n \in \mathbb{Z}\}$, $a, b \in \mathbb{Z}$, where b > 0. A set $O \subseteq \mathbb{Z}$ is called open if and only if $O = \emptyset$ or for every $a \in O$, there is an integer b > 0 such that $N_{a,b} \subseteq O$.

The collection τ , induced by the open sets of type O, is a topology over \mathbb{Z} :

- i) \emptyset and \mathbb{Z} belong to τ ;
- ii) By the definition of elements of τ , the arbitrary union of subsets of τ belongs to τ ;
- iii) If O_1 and O_2 belong to τ then $O_1 \cap O_2$ belongs to τ .
 - In fact, consider $a \in O_1 \cap O_2$. There are b_1 and b_2 such that $N_{a,b_1} \subseteq O_1$ e $N_{a,b_2} \subseteq O_2$. Logo, $N_{a,b_1 \cdot b_2} \subseteq O_1 \cap O_2$.

• Statement 1: Any nonempty open set is infinite.

- Proof: if $O \neq$ then $N_{a,b} \subset O$, for some $a \in O$ and b > 0.
- Statement 2: For any $a \in \mathbb{Z}$ and b > 0, $N_{a,b}$ is an open set.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Statement 1: Any nonempty open set is infinite.

Proof: if $O \neq$ then $N_{a,b} \subset O$, for some $a \in O$ and b > 0.

• Statement 2: For any $a \in \mathbb{Z}$ and b > 0, $N_{a,b}$ is an open set.

Closed sets

A subset A of a topological space X is called a closed set if and only if its complement A^c is an open set in X.

• Statement 3: For any $a \in \mathbb{Z}$ and b > 0, $N_{a,b}$ is closed.

$$N_{a,b} = \mathbb{Z} \setminus \bigcup_{i=1}^{b-1} N_{a+i,b}$$

and
$$\bigcup_{i=1}^{b-1} N_{a+i,b}$$
 is an open set.

Some properties of closed sets

- If X is a topological space then:
- P1. \emptyset and X are closed sets;
- P2. The finite union of closed sets is a closed set;
 - Consider A_i , $1 \le i \le n$ closed sets. Thus,

$$X \setminus \bigcup_{i=1}^n A_i = igcap_{i=1}^n (X \setminus A_i)$$
 is an open set

- P3. The arbitrary intersection of closed sets is a closed set.
 - Consider A_{α} , a family of closed sets. Thus,

$$X \setminus \bigcap A_{\alpha} = \bigcup (X \setminus A_{\alpha})$$
 is an open set

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Argumento de Fürstenberg

 Statement 4: Consider k an integer number such that k ≠ 1 and k ≠ −1. Therefore, k has a prime divisor p and, consequently, k ∈ N_{0,p}. Also,

 $\mathbb{Z}\setminus\{-1,1\}=igcup_{p\in\mathbb{P}}N_{0,p}$, where \mathbb{P} denotes the set of prime numbers.

If \mathbb{P} is finite then:

- $\bigcup_{p \in \mathbb{P}} N_{0,p}$ is a closed set (Statement 3 + P2);
- Thus, $\{-1,1\}$ is an open set (By the definition of a closed set).
- Consequently $\{-1,1\}$ is an infinite set. (Statement 1)

Therefore, the set \mathbb{P} of the prime numbers is infinite.

Referências I

Aigner, Martin and Ziegler, Günter M. Proofs from THE BOOK. 6th.Springer (2018)

Hillel Fürstenberg. On the Infinitude of Primes. Amer. Math, Monthly. 62(5) (1955)

M. Ayala-Rincón (UnB) & T. A. de Lima (UFG)

(日) (四) (日) (日) (日)

Sac