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Abstract. This paper discusses the extension of the PVS sub theory for
rings, part of the PVS algebra theory, with theorems related to the di-
vision algorithm for Euclidean rings and Unique Factorization Domains
that are general structures where an analogous of the Fundamental The-
orem of Arithmetic holds. First, we formalize the general abstract no-
tions of divisibility, prime and irreducible elements in commutative rings,
which are essential to dealing with unique factorization domains. Then,
we formalize the landmark theorem that establishes that every principal
ideal domain is a unique factorization domain. Finally, we specify the
theory of Euclidean domains and formally verify that the rings of inte-
gers, the Gaussian integers, and arbitrary fields are Euclidean domains.
To highlight the benefits of such a general abstract discipline of formal-
ization, we specify a Euclidean gcd algorithm for Euclidean domains and
formalize its correctness. Also, we show how this correctness is inher-
ited under adequate parameterizations for the structures of integers and
Gaussian integers.

Keywords: Theorem Proving · Proof Assistants · PVS · Unique Fac-
torization Domains · Euclidean Rings · Division Algorithms.

1 Introduction

The NASA PVS algebra library ([3]) was recently enriched with a series of
theorems related to the theory of rings. The extension includes complete formal-
izations of the isomorphism theorems for rings, principal and prime and maximal
ideals, and a general abstract version of the Chinese Remainder Theorem (CRT)
which holds for abstract rings, including non-commutative rings. The benefit of
formalizing algebraic results from this abstract theoretical perspective was made
evident showing how, from the abstract version of CRT, the well-known numer-
ical version of CRT for the ring of integers Z was formalized [18].
? Supported by FAPDF DE 00193.00001175/21-11 and CNPq Universal 409003/21-2
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In this work, we give another substantial step towards enriching the PVS
abstract algebra library by formalizing properties about factorization in commu-
tative rings regarding both unique factorization domains and Euclidean rings.
Roughly, unique factorization domains are abstract structures for which a gen-
eral version of the Fundamental Theorem of Arithmetic holds. On the other
hand, Euclidean rings are equipped with a norm that allows defining a suit-
able generalization of Euclid’s division lemma and consequently of notions as
for example the one of greatest common divisor (gcd). The practicality of gcd
is well-known in the ring Z. Nevertheless, mathematicians known this notion is
of general fundamental importance in abstract Euclidean domains for which in
general, gcd should and may be defined in different manners.

Figure 1 highlights the subtheories subject of the extension to the PVS theory
algebra discussed in this paper. The red ones are related to Euclidean rings and
gcd algorithms for Euclidean domains, and the orange ones are those related to
unique factorization domains. The extension includes 210 new formulas enlarging
the theory algebra from 1356 (cf [18]) to 1566 formalized lemmas.

Fig. 1. Ring theories expanding the PVS algebra library

The main motivation to formalize such structures is due to their potential
theoretical and practical applications. Using the example of gcd, one can pro-
vide a general abstract version of the Euclidean algorithm to determine a gcd
between two elements (Euclidean gcd algorithm) in a Euclidean domain. Since
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the ring of integers Z, the Gaussian integers Z[i] (which are the subset of com-
plex numbers whose real and imaginary parts are integer numbers) and rings of
polynomials over integral domains are particular Euclidean domain structures,
the Euclidean gcd algorithm can be applied over them, in a relatively straight-
forward manner, to compute gcds in different manners. Not only for the above
mentioned structures, but for a variety of Euclidean domains.

Also, every element of a unique factorization domain can be factorized as a
finite number of irreducible elements, and one can prove that Euclidean domains
are unique factorization domains. These properties allow us to introduce modular
arithmetic, and verify generic versions of Euler’s Theorem and Fermat’s Little
Theorem for Euclidean domains, and promote factorization in Euclidean domains
as a convenient feature to develop efficient algorithms in symbolic computation
[17], [9]. Thus, a formalization of the main results about unique factorization and
Euclidean domains would allow the formal verification of more complex theories
involving such structures in their scope.

The main contributions of this paper are listed below.

– We formalize the abstract notions of divisibility, prime and irreducible ele-
ments in commutative rings, which are essential to deal with unique factor-
ization domains. In integral domains, prime elements are irreducible. The
converse is not true in general. Among other properties, we formalize the
theorem that establishes that in principal ideal domains (as it is well-known,
it holds in Z) irreducible elements are also prime.

– We specify unique factorization domains and formalize the theorem that
every principal ideal domain is a unique factorization domain, which is a
landmark result in abstract algebra.

– We specify the notion of Euclidean domain and formally verify that the rings
Z and Z[i], and any arbitrary field are Euclidean domains.

– We specify the general abstract notion of gcd for commutative rings, provid-
ing a general Euclidean gcd algorithm for Euclidean domains and formalize
its correctness. Using this result, we parameterize the adequate norms and
gcd relations for the rings Z and Z[i]; thus, obtaining in a straightforward
manner the correctness of such instantiations of the abstract algorithm for
these Euclidean domains. In this manner, we illustrate the benefits of main-
taining the abstract general discipline of formalization for algebraic theories
and the potential of such a discipline for application in concrete algebraic
structures.

The paper is organized as follows: Section 2 presents a theoretical overview of
unique factorization and Euclidean domains, pointing out the main concepts and
results. Also, it comments on some differences between pen-and-paper proofs pre-
sented in Hungerford’s textbook [14] and this formalization. Section 3 discusses
the aspects of the formalization of the Euclidean gcd Algorithm for Euclidean
Domains, as well as its application for two particular cases. Section 4 brings
related work. Finally, Section 5 concludes and suggests future work. The formal-
izations were developed using the Prototype Verification System (PVS) and are
available at algebra W.

https://github.com/mayalarincon/algebraCICM2022
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2 Formalization of Euclidean Domains

Notions such as prime element, division, and gcd between two elements and some
landmark results, including the Fundamental Theorem of Arithmetic, Euclid’s
division lemma, and Euclidean Algorithm, are well established and widespread
for the ring of integers. Such concepts and general versions of exciting results are
extended for abstract algebraic structures [14],[8] and are the scope of our for-
malization. This section gives both a theoretical overview of the central notions
and properties formalized and discuss their formalization. To point out some dif-
ferences between pen-and-paper vs. formalized proofs, some analytical concepts
and results are presented as they are enunciated in Chapter III of Hungerford’s
textbook [14].

2.1 Prime and irreducible elements on rings

The definitions of prime and irreducible elements rely on the general concept of
divisibility on a ring. The specification of the notions of divisibility and associated
elements are given in Specification 1.1.

Specification 1.1. Specification of the definition of divisibility and associated elements
in the subtheory ring_divides_def W

R: VAR (ring?)
a, b: VAR T

divides ?(R)(a: (R - {zero}), b: (R)): bool = EXISTS (x: (R)): a*x = b

associates ?(R)(a,b:(R - {zero })): bool = divides ?(R)(a,b) AND
divides ?(R)(b,a)

In Hungerford’s textbook the definition of divisibility relies on a commutative
ring. In fact, it avoids the discrimination between left or right divisor of an
element, and since the main results demand a commutative ring in the hypoth-
esis, it is a reasonable requirement. However, notice that commutativity is not
a crucial property in such a notion, since it only depends on the operation of
multiplication in a ring. Because of that, we opted for generalize the definition
and specify divisibility on rings, not necessarily commutative. Another remark
is about the specification of associates?(R)(a,b): the textbook omits that a
and b are nonzero elements. Of course, this is obvious since it is required in
the definition of divides?(R)(a,b). However, the lack of such a hypothesis is
recurrent in several statements along the text that require it (for example, in
Theorem 1).

In the subtheory ring_divides W , we formalized the properties related to
the divisibility stated in Theorem 1. Some of them involve the object “unit".
In a ring (R,+, ∗, zero, one) with identity one for multiplication, an element u
is called a unit if u is left- and right-invertible; that is, there exist elements
u−11 , u−12 ∈ R such that u ∗ u−11 = u−12 ∗ u = one.

https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_divides_def.pvs/#L25-L45
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_divides.pvs#L1-L1
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Theorem 1 (Theo. 3.2 - Hungerford). Let a, b and u be elements of a com-
mutative ring R with identity.

i) a divides b (denoted as a | b) if and only if (b) ⊂ (a), where (x) denotes the
principal ideal generated by x.

ii) a and b are associates if and only if (a) = (b).
iii) u is a unit if and only if u | r for all r ∈ R.
iv) u is a unit if and only if (u) = R.
v) The relation "a and b are associates" is an equivalence relation on R.
vi) If a = br, where r ∈ R is a unit, then a and b are associates. If R is an

integral domain, then the converse is true.

We specified prime and irreducible elements on a ring with identity (Specifi-
cation 1.2) from the concepts of divisibility and unit.

Specification 1.2. Specification of irreducible and prime elements in the subtheories
ring_irreducible_element_def W and ring_prime_element_def W , respectively
R: VAR (ring_with_one?)
R_irreducible_element ?(R)(x:(R)): bool = x/=zero AND (NOT unit?(R)(x)) AND

(FORALL (a,b:(R)): x = a*b IMPLIES (unit?(R)(a) OR unit?(R)(b)))
%---------------------------------------
R_prime_element ?(R)(x:(R)): bool = x/=zero AND (NOT unit?(R)(x)) AND
(FORALL (a,b:(R)): divides ?(R)(x, a*b) IMPLIES

divides ?(R)(x, a) OR divides ?(R)(x, b))

The ring of integers has the feature that prime and irreducible elements are
indistinguishable. However, this is not true for some algebraic structures. For
instance, 2 is prime but not irreducible in Z6. Theorem 2 gives some prop-
erties regarding prime and irreducible elements formalized in the subtheory
ring_prime_element W . Among others, it provides the result that prime and
irreducible elements are equal over principal ideal domains.

Theorem 2 (Theo. 3.4 - Hungerford). Let p and c be nonzero elements is
an integral domain R.

i) p is prime if and only if (p) is nonzero prime ideal;
ii) c is irreducible if and only if (c) is maximal in the set S of all proper principal

ideals of R.
iii) Every prime element of R is irreducible.
iv) If R is a principal ideal domain, then p is prime if and only if p is irreducible.
v) Every associate of an irreducible [resp. prime] element of R is irreducible

[resp. prime].
vi) The only divisors of an irreducible element of R are its associates and the

units of R.

Although the result is stated for integral domains, Hungerford advises us that, in
some parts of the theorem, weakened hypothesis can be considered. We formalize
the results using the minimum number of required conditions and detect that
items (i) and (vi) of the Theorem 2 hold for commutative rings with identity.

https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_irreducible_element_def.pvs#L11-L12
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_prime_element_def.pvs#L12-L14
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_prime_and_irreducible_element.pvs#L1-L1
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2.2 Unique Factorization Domains

The well-known Fundamental Theorem of Arithmetic for integers states that any
positive integer number greater than 1 can be factorized as a unique product
of prime numbers, unless a permutation of such factors. Unique Factorization
Domains (UFDs) are integral domains where an analogous of such a Theorem
holds. The Specification 1.3 shows the definition of UFDs in PVS. It depends
on a sequence of irreducible elements fsIr?(R)(fsI) on a ring R with identity
and a recursive operator op_fseq(fsI), specified in subtheory op_finseq_def
W , which multiplies the elements of such a sequence. We specify the operator
op_fseq(fsI) over an abstract structure (T, ∗, one) equipped with a binary op-
eration ∗ and a constant one. From the point of view of the formalization, such
a general specification is very useful for two reasons: it allows the use of the op-
erator op_fseq(fsI) in a variety of abstract and concrete structures (monoids,
monads, groups, rings, integers, reals) by only adequately parameterizing the
subtheory op_finseq_def; also, it avoids proof obligations called Type Correct-
ness Conditions (TCCs) generated by the system, since the operator is defined
for elements of an abstract type, which provides more automation in our formal
verification.

Specification 1.3. Specification of Unique Factorization subtheory
ring_unique_factorization_domain_def W

fsIr?(R)(fsI: finseq [(R)]): bool = FORALL (i: below[length(fsI )]):
R_irreducible_element ?(R)(fsI(i))

unique_factorization_domain ?(R): bool = integral_domain_w_one?(R) AND
FORALL(a: (R)): a /= zero AND NOT unit?(R)(a) IMPLIES
EXISTS(fsI:(fsIr?(R))):a = op_fseq(fsI) AND
FORALL(fsIp:fsIr(R)):a = op_fseq(fsIp) IMPLIES length(fsI) = length(fsIp) AND
EXISTS(phi:[ below[length(fsI)]->below[length(fsI )]]): (bijective ?(phi)) AND
FORALL(i:below[length(fsI )]): associates ?(R)(fsIp(phi(i)),fsI(i))

In subtheory ring_unique_factorization_domain, we formalized the Theorem
3, which is a landmark result about UFDs.

Theorem 3 (Theo. 3.7 - Hungerford). Every principal ideal domain R is a
unique factorization domain.

The formalization of the Theorem 3 has two main steps. We briefly comment
on the following.

Step 1 - Existence of a factorization
First, we enriched previous subtheories established in the theory algebra

with auxiliary results. In the subtheory ring_ideal W , we formalized the
lemma chain_ideal_union ideal W that states that the union of a chain of
ideals in a ring R is an ideal. In the subtheory ring_with_one_maximal_ideal
W , we formalized the lemma nonzero_ring_exists_maximal_ideal_aux W ,
which proves that every ideal in a ring R with identity, except R itself, is con-
tained in a maximal ideal inR. The formalization of this lemma considers an ideal
A 6= R, S = {B ⊂ R; B is ideal in R, B 6= R and A ⊂ B} and C = {Ci|i ∈ I}

https://github.com/mayalarincon/algebraCICM2022/blob/main/op_finseq_def.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/op_finseq_def.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_unique_factorization_domain_def.pvs#L1-L22
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_ideal.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_ideal.pvs#L108-L110
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_with_one_maximal_ideal.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_with_one_maximal_ideal.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_with_one_maximal_ideal.pvs#L84-L85
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an arbitrary chain of ideals in S. We prove that the ideal C =
⋃
Ci is an upper

bound of the chain C in S and, by using Zorn’s lemma from NASA theory orders,
we conclude that S has a maximal element, which is a maximal ideal in R. In
the subtheory ring_principal_ideal W , we add the lemma stable_chain
W , which says that if R is a principal ideal ring and (a1) ⊂ (a2) . . . is a chain
of ideals in R, then for some positive integer n, (aj) = (an) for all j ≥ n. The
lemma nonzero_nonunit_irreducible_divides W , formalized in the subthe-
ory ring_principal_ideal_domain W , states that every nonzero and nonunit
element in a principal ideal domain is divided by an irreducible element.

We conclude Step 1 by verifying that the subset below, of R, a principal ideal
domain, is empty.

non_fact_el_set(R) = { x : x is a nonzero nonunit element in R and cannot
be finitely factorized into irreducible elements. }

In fact, if a ∈ non_fact_el_set(R), we could build an ascending chain (a) ⊂
(a1) ⊂ ... of ideals, which is not possible by the lemma stable_chain. The key
to verify such fact was to specify the recursive function phi(n,R, a) W showed
in Specification 1.4 (subtheory ring_principal_ideal_domain W ) and verify
that it is well defined whenever non_fact_el_set(R) is nonempty.

Specification 1.4. Auxiliary function to build an ascending chain of ideals
phi(n:nat , R:principal_ideal_domain , a:(non_fact_el_set(R))):
RECURSIVE (non_fact_el_set(R)) =
IF n = 0 then a
ELSE choose ({x : (non_fact_el_set(R))|

strict_subset ?(one_gen(R)(phi(n-1, R, a)),one_gen(R)(x))})
ENDIF MEASURE n

If a ∈ non_fact_el_set(R), the choice of the element a1, obtained by
the function choose in Specification 1.4, is guaranteed. In fact, the lemma
nonzero_nonunit_irreducible_divides ensures that a = ca1, where c is ir-
reducible. It implies that a1 belongs to non_fact_el_set(R) and satisfies the
condition (a) ⊂ (a1) by Theorem 1(i).

Step 2: “Uniqueness” of a factorization
We mean “uniqueness”, the existence of a bijective function between the el-

ements of two factorizations mapping associated elements. First, we formalized
the lemma prime_el_divides W (subtheory ring_prime_element W ) which
states if a prime element p in an integral domain divides the product a1 . . . an
then there exists 1 ≤ i ≤ n such that p divides ai. By 2(iii), it holds if p is an
irreducible element. From this, if a1 . . . an = a = b1 . . . bm, where ai, 1 ≤ n and
bj , 1 ≤ m are irreducible elements, then c1 divides di, for some i. By Theorem
2 (vi), c1 and di are associates. Using induction on n, we prove that n = m and
establish the required bijective function.

2.3 Euclidean Rings

A Euclidean ring is a commutative ring R equipped with a norm ϕ over R −
{zero}, where an abstract version of the well-known Euclid’s division lemma

https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_principal_ideal.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_principal_ideal.pvs#L63-L68
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_principal_ideal.pvs#L63-L68
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_principal_ideal_domain.pvs#L62-L64
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_principal_ideal_domain.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_principal_ideal_domain.pvs#L75-L79
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_principal_ideal_domain.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_prime_and_irreducible_element.pvs#L83-L87
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_prime_and_irreducible_element.pvs#L1-L1
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holds. We specify Euclidean rings and Euclidean domains in the subtheories
euclidean_ring_def W and euclidean_domain_def W (Specification 1.5).

Specification 1.5. Definitions of Euclidean rings and Euclidean domains
euclidean_ring?(R): bool = commutative_ring?(R) AND
EXISTS (phi: [(R - {zero}) -> nat]): FORALL(a,b: (R)):

((a*b /= zero IMPLIES phi(a) <= phi(a*b)) AND
(b /= zero IMPLIES EXISTS(q,r:(R)):
(a = q*b+r AND (r = zero OR (r /= zero AND phi(r) < phi(b))))))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

euclidean_domain ?(R): bool = euclidean_ring?(R) AND integral_domain_w_one?(R)

In subtheory euclidean_domain W , we formalized that elements of Eu-
clidean ring can be factorized as irreducible elements by verifying Theorem 4.

Theorem 4 (Theo. 3.9 - Hungerford). A Euclidean ring R is a principal
ideal ring with identity. Consequently every Euclidean domain is a unique fac-
torization domain.

The verification makes use of the well-ordering principle over ϕ(I∗) = {ϕ(x) ∈
N; ; x ∈ I − {zero}}, where I is a nonzero ideal in R and ϕ is a norm on
R−{zero}. By choosing a ∈ I such that ϕ(a) is the minimum element of ϕ(I∗),
b ∈ I satisfies b = qa + r, for some q ∈ R and r ∈ I. From this, we infer that
r = 0, since r 6= 0 contradicts the minimality of ϕ(a). Consequently, b = qa and
I ⊂ Ra ⊂ (a) ⊂ I, which guarantee that every ideal in R is a principal ideal.
By 3, we have that a Euclidean principal ideal domain is a unique factorization
domain.

In subtheory euclidean_domain W , we also formalized the results stating
that the ring of integers ( W ) and any arbitrary field ( W ) are Euclidean
domains.

3 Formalization of gcd Algorithm for Euclidean Domains

Two additional definitions were included in the theory Euclidean_ring_def
W to allow abstraction of adequate Euclidean norms and associated functions
fulfilling the properties of Euclidean rings (see Specification 1.6).

The first definition is the relation Euclidean_pair? W Given a Euclidean
ring R and a Euclidean norm of non zero elements over the naturals φ : R \
{zero} → N, Euclidean_pair?(R,φ) holds whenever φ satisfies the constraints
of a Euclidean norm over R.

The second definition is the curried relation Euclidean_f_phi?(R,φ)(fφ)
W . It holds whenever Euclidean_pair?(R,φ) holds, and fφ a function from
R × R \ {zero} to R × R, such that for all pair of elements of R in its domain,
fφ(a, b) gives a pair of elements, say (div, rem) satisfying the constraints of
Euclidean rings regarding the norm φ: if a 6= zero, a = div ∗ b + rem, and if

https://github.com/mayalarincon/algebraCICM2022/blob/main/euclidean_ring_def.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/euclidean_domain_def.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/euclidean_domain.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/euclidean_domain.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/euclidean_domain.pvs#L46-L47
https://github.com/mayalarincon/algebraCICM2022/blob/main/euclidean_domain.pvs#L50-L51
https://github.com/mayalarincon/algebraCICM2022/blob/main/euclidean_ring_def.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/euclidean_ring_def.pvs#L1-L1
https://github.com/mayalarincon/algebraCICM2022/blob/main/euclidean_ring_def.pvs#L40-L43
https://github.com/mayalarincon/algebraCICM2022/blob/main/euclidean_ring_def.pvs#L47-L52
https://github.com/mayalarincon/algebraCICM2022/blob/main/euclidean_ring_def.pvs#L47-L52
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rem 6= zero, φ(rem) < φ(b). These definitions are correct since the existence
of such a φ and fφ is guaranteed by the fact that R is a Euclidean ring. Also,
notice that the decrement of the norm, i.e., φ(rem) < φ(b), is the key to build
an abstract Euclidean terminating procedure.

Specification 1.6. Additional definitions in the subtheory Euclidean_ring_def
Euclidean_pair?(R : (Euclidean_ring?), phi: [(R - {zero}) -> nat]) : bool =

FORALL(a,b: (R)): ((a*b /= zero IMPLIES phi(a) <= phi(a*b)) AND
(b /= zero IMPLIES

EXISTS(q,r:(R)): (a = q*b+r AND
(r = zero OR (r /= zero AND phi(r) < phi(b))))))

Euclidean_f_phi?(R : (Euclidean_ring?),
phi : [(R - {zero}) -> nat] | Euclidean_pair?(R,phi))

(f_phi : [(R) , (R - {zero}) -> [(R),(R)]]) : bool =
FORALL (a : (R), b :(R - {zero })):
IF a = zero THEN f_phi(a,b) = (zero , zero)
ELSE LET div = f_phi(a,b)‘1, rem = f_phi(a,b)‘2 IN

a = div * b + rem AND
(rem = zero OR (rem /= zero AND phi(rem) < phi(b)))

ENDIF

Using previous two relations, a general abstract recursive Euclidean gcd al-
gorithm is specified as the curried Euclidean_gcd_algorithm W in the sub-
theory ring_euclidean_algorithm W (See Specification 1.7). The correctness
of this algorithm is guaranteed by the types of its arguments. Indeed, since al-
lowed arguments R,φ, and fφ should satisfy Euclidean_f_phi?(R,φ)(fφ), R
is a Euclidean ring with associated Euclidean norm φ and adequate division
and remainder functions given by fφ. The termination of the algorithm is a
proof obligation W (termination TCC) automatically generated by PVS. Ter-
mination is proved using the lexicographic MEASURE of the algorithm provided
in the specification. This measure decreases after each possible recursive call:
for Euclidean_gcd_algorithm(R,φ, fφ)(a, b), if a 6= zero, φ(a) ≥ φ(b) and
rem 6= zero, the recursive call is Euclidean_gcd_algorithm(R,φ, fφ)(b, rem);
thus, (φ(b), φ(a)) is lexicographical greater than (φ(rem), φ(b)), since φ(b) >
φ(rem). In the other case, if a 6= zero, and φ(b) > φ(a), the recursive call is
Euclidean_gcd_algorithm(R,φ, fφ)(b, a); thus, (φ(b), φ(a)) is lexicographical
greater than (φ(a), φ(b)), since φ(b) > φ(a).

The proof of correctness of the recursive algorithm, is given as a straightfor-
ward corollary of the Euclid_theorem W (in Specification 1.7) that establishes
the correctness of each recursive step regarding the abstract definition of gcd W
given in Specification 1.8. Essentially, what this theorem states is that, given an
adequate Euclidean norm φ and associated function fφ, the gcd of a pair (a, b)
is equal to the gcd of the pair (rem, b), where rem is computed through fφ, i.e.,
rem is equal to the second projection of fφ(a, b). Notice, that since Euclidean
rings allow a variety of Euclidean norms and associated functions (e.g., [14],
[10]), the definition of gcd is specified as the relation gcd? and not as a function.

Finally, the proof of correctness of the abstract Euclidean algorithm is by
induction, using the lexicographic MEASURE of the algorithm, as the theorem
Euclidean_gcd_alg_correctness W (in Specification 1.7). For an input pair

https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L36-L48
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L23-L67
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.tccs#L105-L119
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L51-L57
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_gcd_def.pvs#L36-L40
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L60-L65
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(a, b), in the inductive step of the proof, when φ(b) > φ(a) and the recursive call
swaps the arguments, one assumes that

gcd?(R)({b, a}, Euclidean_gcd_algorithm(R,φ, fφ)(b, a))

which means that Euclidean_gcd_algorithm(R,φ, fφ)(b, a) computes correctly
the gcd of the pair (b, a). From this assumption, one concludes that

gcd?(R)({a, b}, Euclidean_gcd_algorithm(R,φ, fφ)(a, b))

Otherwise, when φ(a) ≥ φ(b), rem = (fφ(a, b))
′2, and the recursive call is

Euclidean_gcd_algorithm(R,φ, fφ)(b, rem), by induction hypothesis one has
that

gcd?(R)({b, rem}, Euclidean_gcd_algorithm(R,φ, fφ)(b, rem))

Finaly, by application of Euclid_theorem, one concludes that the abstract gen-
eral Euclidean algorithm computes correctly a gcd for the pair (a, b).

Specification 1.7. Abstract gcd Euclidean algorithm for Euclidean rings in the sub-
theory ring_euclidean_algorithm W

Euclidean_gcd_algorithm(R : (Euclidean_domain ?[T,+,*,zero ,one]),
(phi: [(R - {zero}) -> nat] | Euclidean_pair?(R,phi)),
(f_phi: [(R),(R - {zero}) -> [(R),(R)]] |

Euclidean_f_phi?(R,phi)(f_phi)))
(a: (R), b: (R - {zero })) : RECURSIVE (R - {zero}) =

IF a = zero THEN b
ELSIF phi(a) >= phi(b) THEN

LET rem = (f_phi(a,b))‘2 IN
IF rem = zero THEN b
ELSE Euclidean_gcd_algorithm(R,phi ,f_phi)(b,rem)
ENDIF

ELSE Euclidean_gcd_algorithm(R,phi ,f_phi)(b,a)
ENDIF

MEASURE lex2(phi(b), IF a = zero THEN 0 ELSE phi(a) ENDIF)

Euclid_theorem : LEMMA
FORALL(R:( Euclidean_domain ?[T,+,*,zero ,one]),

(phi: [(R - {zero}) -> nat] | Euclidean_pair?(R, phi)),
(f_phi: [(R),(R - {zero}) -> [(R),(R)]] |

Euclidean_f_phi?(R,phi)(f_phi)),
a: (R), b: (R - {zero}), g : (R - {zero })) :

gcd?(R)({x : (R) | x = a OR x = b}, g) IFF
gcd?(R)({x : (R) | x = (f_phi(a,b))‘2 OR x = b}, g)

Euclidean_gcd_alg_correctness : THEOREM
FORALL(R:( Euclidean_domain ?[T,+,*,zero ,one]),

(phi: [(R - {zero}) -> nat] | Euclidean_pair?(R, phi)),
(f_phi: [(R),(R - {zero}) -> [(R),(R)]] |

Euclidean_f_phi?(R,phi)(f_phi)),
a: (R), b: (R - {zero}) ) :

gcd?(R)({x : (R) | x = a OR x = b},
Euclidean_gcd_algorithm(R,phi ,f_phi)(a,b))

Specification 1.8. gcd definition for commutative rings - subtheory ring_gcd_def W

https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L23-L67
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_gcd_def.pvs#L23-L45
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gcd?(R)(X: {X | NOT empty ?(X) AND subset ?(X,R)}, d:(R - {zero })): bool =
(FORALL a: member(a, X) IMPLIES divides ?(R)(d,a)) AND

(FORALL (c:(R - {zero })):
(FORALL a: member(a, X) IMPLIES divides ?(R)(c,a)) IMPLIES

divides ?(R)(c,d))

Now, we show how the correctness of the abstract Euclidean_gcd_algorithm
is easily inherited, under adequate parameterizations, for the structures of in-
tegers Z and Gaussian integers Z[i]. The lines of reasoning follow those given
in discussions on factoration in commutative rings and multiplicative norms in
text books (e.g, Section 47 in [10], or Chapter 3, Section 3 in [14]).

The Specification 1.9 presents the case of the Euclidean ring Z. The Eu-
clidean norm φZ is selected as the absolute value while the associated function
fφZ is built using the integer division and remainder, specified in the PVS pre-
lude libraries as div and rem: for a ∈ Z, b ∈ Z \ {0}, div(a, b) computes the
integer division of a by b, and, for b ∈ Z+ \ {0}, rem(b)(a) computes the re-
mainder of a by b. The correctness of the Euclidean algorithm is specified as
the corollary Euclidean_gcd_alg_correctness_in_Z W , that states that for
the Euclidean ring of integers Z, and any i, j ∈ Z, j 6= 0, the parameterized
abstract algorithm, Euclidean_gcd_algorithm[int,+,*,0,1] satisfies the re-
lation gcd?[int,+,*,0]:

gcd?[int,+, ∗, 0](Z)(i, j, Euclidean_gcd_algorithm[int,+, ∗, 0, 1](Z, φZ, fφZ)(i, j))

The formalization of this corollary follows from the theorem of correctness for
the abstract Euclidean algorithm, Euclidean_gcd_alg_correctness theorem
(Specification 1.7), which essentially requires proving that the chosen Euclidean
measure φZ, and associated function fφZ fulfill the conditions in the definition
of Euclidean rings. The latter formalized as lemma phi_Z_and_f_phi_Z_ok W
: Euclidean_f_phi?[int,+, ∗, 0](Z, φZ)(fφZ).

Specification 1.9. Correctness of the parameterization of the abstract Euclidean al-
gorithm for the Euclidean ring Z - subtheory ring_euclidean_gcd_algorithm_Z W

phi_Z(i : int | i /= 0) : posnat = abs(i)

f_phi_Z(i : int , (j : int | j /= 0)) : [int , below[abs(j)]] =
((IF j > 0 THEN ndiv(i,j) ELSE -ndiv(i,-j) ENDIF), rem(abs(j))(i))

phi_Z_and_f_phi_Z_ok : LEMMA Euclidean_f_phi?[int ,+,*,0](Z,phi_Z)(f_phi_Z)

Euclidean_gcd_alg_correctness_in_Z : COROLLARY
FORALL(i: int , (j: int | j /= 0) ) :

gcd?[int ,+,*,0](Z)({x : (Z) | x = i OR x = j},
Euclidean_gcd_algorithm[int ,+,*,0,1](Z, phi_Z,f_phi_Z)(i,j))

The Specification 1.10 presents the formalization of correctness of the Eu-
clidean algorithm for the Euclidean ring Z[i] of Gaussian integers. The Eu-
clidean norm of a Gaussian integer x = (Re(x) + i Im(x)) ∈ Z[i], φZ[i](x),
is selected as the natural given by the multiplication of x by its conjugate
(conjugate(x) = Re(x)− i Im(x)): Re(x)2 + Im(x)2. The construction of an ad-
equate associated function fφZ[i] (f_phi_Zi in Specification 1.10) requires addi-
tional explanations and is specified through the auxiliary function div_rem_appx

https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L94-L96
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L90-L90
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L72-L98
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L154-L157
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W . For a pair of integers (a, b), b 6= 0, this function computes the pair of integers
(q, r) such that a = q b + r, and |r| ≤ |b|/2; thus, q b is the integer closest to
a. The equality a = q b+ r is formalized as lemma div_rev_appx_correctness
W . Several properties on the field of complex numbers are imported from the
PVS complex theory.

Now, we explain the construction of the function fφZ[i] W . For y, a Gaussian
integer and x, a positive integer, let Re(y) = q1x+r1 and Im(y) = q2x+r2, where
(q1, r1) and (q2, r2) are computed with the auxiliary function div_rem_appx
(with respective inputs (Re(y), x) and (Im(y), x)). Let q = q1 + iq2 and r = r1 +
ir2, then y = qx+r. Also, notice that if r 6= 0 then φZ[i](r) ≤ φZ[i](x), since r21+
r22 ≤ x2/2 ≤ x2. For the case in which x is a non zero Gaussian integer, φZ[i](x) >
0 holds. Then, we can compute div_rem_appx(y conjugate(x), x conjugate(x)),
obtaining q, r′ ∈ Z[i] such that y conjugate(x) = q (x conjugate(x)) + r′, and
r′ = 0 or φZ[i](r′) < φZ[i](x conjugate(x)). Now, select r = y−q x, then y = q x+
r, and r conjugate(x) = r′. Finally, when r 6= 0, since φZ[i](r conjugate(x)) <
φZ[i](x conjugate(x)), by application of the lemma phi_Zi_is_multiplicative
W , we conclude that φZ[i](r) < φZ[i](x).

The formalization of correctness of the Euclidean algorithm for Gaussian inte-
gers obtained by parameterizations with Z[i], its Euclidean norm φZ[i] and asso-
ciated function fφZ[i] follows as the simple corollary Euclidean_gcd_alg_in_Zi
W in Specification 1.10. This is proved using the correctness of the abstract
Euclidean algorithm (Specification 1.7) and lemma phi_Zi_and_f_phi_Zi_ok
W . The latter states that the Euclidean norm φZ[i] and its associated function
fφZ[i] are adequate for the Euclidean ring Z[i]:

Euclidean_f_phi?[complex,+, ∗, 0](Z[i], φZ[i])(fφZ[i])

Specification 1.10. Correctness of the parameterization of the abstract Euclidean
algorithm for Z[i] - subtheory ring_euclidean_gcd_algorithm_Zi W

Zi: set[complex] = {z : complex | EXISTS (a,b:int): a = Re(z) AND b = Im(z)}

Zi_is_ring: LEMMA ring?[complex ,+,*,0](Zi)

Zi_is_integral_domain_w_one: LEMMA integral_domain_w_one?[complex ,+,*,0,1](Zi)

phi_Zi(x:(Zi) | x /= 0): nat = x * conjugate(x)

phi_Zi_is_multiplicative: LEMMA
FORALL ((x: (Zi) | x /= 0), (y: (Zi) | y /= 0)):

phi_Zi(x * y) = phi_Zi(x) * phi_Zi(y)

div_rem_appx(a: int , (b: int | b /= 0)) : [int , int] =
LET r = rem(abs(b))(a),

q = IF b > 0 THEN ndiv(a,b) ELSE -ndiv(a,-b) ENDIF IN
IF r <= abs(b)/2 THEN (q,r)
ELSE IF b > 0 THEN (q+1, r - abs(b))

ELSE (q-1, r - abs(b))
ENDIF

ENDIF

div_rev_appx_correctness : LEMMA

https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L154-L157
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L154-L157
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L161-L164
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L161-L164
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L171-L173
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L145-L146
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L145-L146
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L186-L188
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L186-L188
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L177-L177
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L177-L177
https://github.com/mayalarincon/algebraCICM2022/blob/main/ring_euclidean_algorithm.pvs#L108-L190
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FORALL (a: int , (b: int | b /= 0)) :
abs(div_rem_appx(a,b)‘2) <= abs(b)/2 AND
a = b * div_rem_appx(a,b)‘1 + div_rem_appx(a,b)‘2

f_phi_Zi(y: (Zi), (x: (Zi) | x /= 0)): [(Zi),(Zi)] =
LET q = div_rem_appx(Re(y * conjugate(x)), x * conjugate(x))‘1 +

div_rem_appx(Im(y * conjugate(x)), x * conjugate(x))‘1 * i,
r = y - q * x IN (q,r)

phi_Zi_and_f_phi_Zi_ok: LEMMA
Euclidean_f_phi?[complex ,+,*,0](Zi,phi_Zi)(f_phi_Zi)

Euclidean_gcd_alg_in_Zi: COROLLARY
FORALL(x: (Zi), (y: (Zi) | y /= 0) ) :

gcd?[complex ,+,*,0](Zi)({z :(Zi) | z = x OR z = y},
Euclidean_gcd_algorithm[complex ,+,*,0,1](Zi, phi_Zi,f_phi_Zi)(x,y))

4 Related Work

Several formalizations focus on specific ring structures as the ring of integers.
Such developments range from simple formalization exercises, such as correct-
ness proofs of gcd algorithms for Z, to elaborated mechanical proofs of the
Chinese Remainder theorem for Z. The latter started from Zhang and Hua’s
RRL (Rewrite Rule Laboratory) mechanization [24], followed by different ap-
proaches in Mizar, HOL Light, hol98, and Coq [22], ACL2 [20], and VeriFun
[23]. Nevertheless, the general algebraic abstract approach is followed by a few
developments. In particular, such an approach is followed in the Isabelle/HOL
algebra library (see [1], and [2]); a library that provides a wide range of theorems
on mathematical structures, including results on rings, groups, factorization over
ideals, rings of integers and polynomial rings. Also, the Lean mathlib library [7]
specifies unique factorization domains, prime and irreducible elements in commu-
tative rings, and relations with principal ideal domains. In addition, it specifies
the notion of gcd for Euclidean domains and formalizes several properties as
the correctness of the extended Euclidean algorithm by applying Bézout’s gcd
lemma. Nevertheless, mathlib neither includes a general abstract presentation
of the Euclidean algorithm nor parameterizations to specific Euclidean domains
as given in this paper. A recent extension of mathlib specifies the ring of Witt
vectors and formalizes the isomorphism between the ring of Witt vectors over
Z/pZ and the ring of p-adic integers Zp, for a prime p [6].

In Coq, results about groups, rings, and ordered fields were formalized as
part of the FTA project [11]; this work gave rise to the formalization of the Feit
and Thompson’s proof of the Odd Order Theorem [12]. Also, there are formal-
izations in Coq of real ordered fields [5], finite fields [19], and rings with explicit
divisibility [4]. In Nuprl and Mizar, there are proofs of the Binomial Theorem
for rings in [15] and [21], respectively, and a Mizar formalization of the First Iso-
morphism Theorem for rings [16]. In ACL2, there exists a hierarchy of algebraic
structures ranging from setoids to vector spaces that aims the formalization of
computer algebra systems [13].
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5 Conclusions and Future Work

In contrast to other formalizations that are restricted to specific ring structures,
we follow an approach focusing our formalizations on the theory of abstract
rings, as done in [7] and [2]. Advantages of following such an approach include
increasing the interest of mathematicians in formalizations and having practi-
cal general presentations of computational algebraic properties portable to spe-
cific ring structures. In particular, in [18], we formalized the Chinese Remainder
Theorem for (non-necessarily commutative) rings and obtained as a corollary
the CRT version for the ring of integers. This work substantially extended the
algebra PVS library by specifying Euclidean rings and factorization domains,
and formalizing the correspondence between principal ideal domains and unique
factorization domains. Also, it proved the correctness of a general Euclidean gcd
algorithm for Euclidean domains. The usefulness of such an abstraction is made
evident through the formalization of simple corollaries stating the correctness of
the Euclidean algorithm (parameterized) for the rings of integers and Gaussian
integers (Z and Z[i]).

As future work, we will include the specification of modular arithmetic, and
verification of generic versions of Euler’s Theorem and Fermat’s Little Theorem
for Euclidean domains.
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